# Lubricants – Lubricating Oils



Judit Balogh

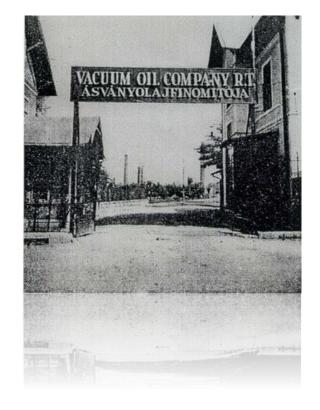
2021.10.27

Budapesti Műszaki- és Gazdaságtudományi Egyetem

## Agenda






### MOL-LUB Ltd.







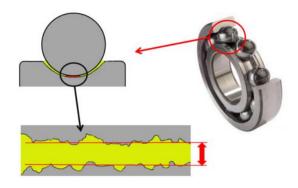






#### HISTORY OF LUBRICANTS

- Lubricants have been present since the first mechanical parts
- First shafts were made of wood, and their rotation was aided by animal fats.
- During the Industrial Revolution lubricants served as coolants
- The improvement of mechanical parts and the increasingly severe conditions require continuously improving lubricants.








#### TASKS OF LUBRICANTS

- Lubricants produce a liquid film between moving mechanical parts.
  - They decrease the coefficient of friction
  - Reduce wear
  - Protect mechanical parts from seizure
  - Protect and passivise surfaces,
  - Inhibit corrosion
  - Etc.
  - Increase the life of equipment!





Lubricants have become structural elements!



# TYPES OF LUBRICANTS

#### PHYSICAL STATE

- Gases
- Liquids
- Consistent materials
- Solid lubricants
- Application conditions determine the selection of lubricant, therefore the highest demand is for liquid lubricants





## USE OF LUBRICATING OILS

#### Automotive lubricants

- Engine oils
- Gear oils

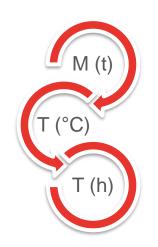
#### Industrial oils

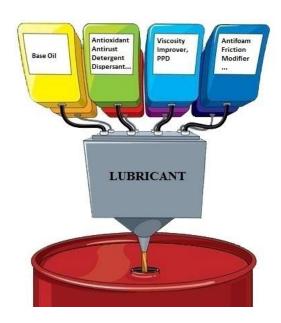
- Hydraulic oils
- Turbine oils
- Compressor oils
- Oils for machine tools
- Heat transfer oils

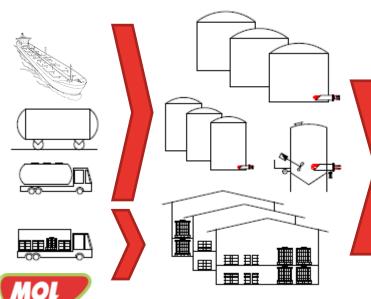
#### Other areas

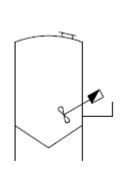
- Food industry
- Pharmaceutical (white) oils





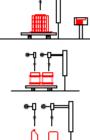





# PRODUCTION OF LUBRICATING OILS

- "Oil blending"
- Batch operation






















### **COMPOSITION OF ENGINE OILS**

- ~ 80% base oil
- Mineral
  - Gr. I.
  - Gr. II.
  - Gr. III.
- Synthetic
  - Gr. IV (PAO)
  - Gr. V (other, eg. esters)



- ~ 20% additive
- Viscosity Modifier
- Pour Point Depressant
- Detergent
- Dispersant
- Anti-Wear additive
- Oxidation inhibitor
- Friction Modifier
- Foam Inhibitor



# FUNCTION OF BASE OILS

- Role of Base Oils in Lubricants
  - Provides some level of lubrication
  - Solvent for additives
  - Medium for heat transfer
  - Cleaning agent
  - Provides flow properties





### TYPES OF BASE OILS

| API Base Oil categories |                        |        |                                |                 |  |  |  |  |
|-------------------------|------------------------|--------|--------------------------------|-----------------|--|--|--|--|
| BO Group                | S content (m/m) %      |        | Saturated hydrocarbons (m/m) % | Viscosity Index |  |  |  |  |
| Group I                 | > 0,03                 | And/or | < 90                           | 80 - 119        |  |  |  |  |
| Group II                | < 0,03                 | And    | > 90                           | 80 - 119        |  |  |  |  |
| Group III               | < 0,03                 | And    | > 90                           | > 120           |  |  |  |  |
| Group IV                | Polyalphaolefins (PAO) |        |                                |                 |  |  |  |  |
| Group V                 | Other base oils        |        |                                |                 |  |  |  |  |











Mineral

Hydrotrated mineral

Hydrocracked

PAO

Other (Esters, PAG)



# MOST IMPORTANT PARAMATER

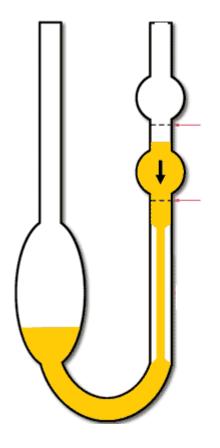
- A fluid's resistance to gradual deformation by stress
- "How thick the fluid is"

$$\mu = \frac{\pi \times r^4 \times g \times I \times t}{8L \times V} = K \times (t_1 - t_2)$$

μ: Kinematic Viscosity

r: Radius of capillary

I: Average hydrostatic head

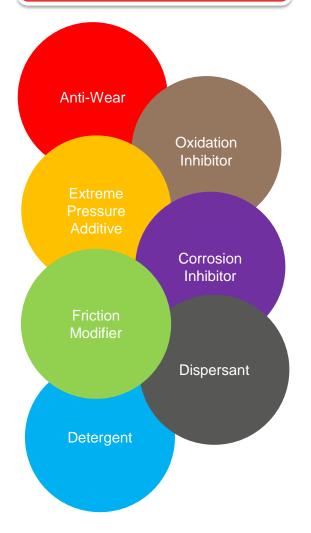

g: g force

V: Volumetric speed

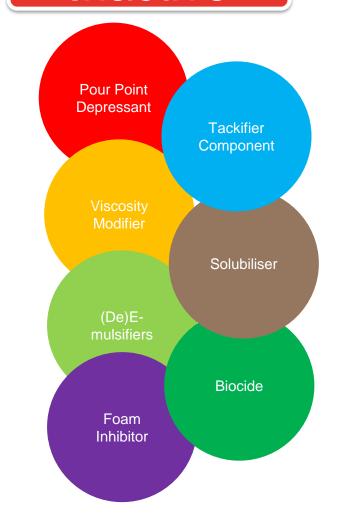
t: Time

k: Capillary constant

#### Kinematic Viscosity



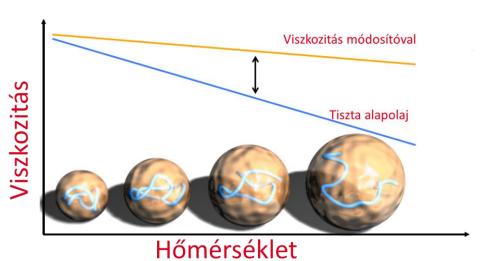


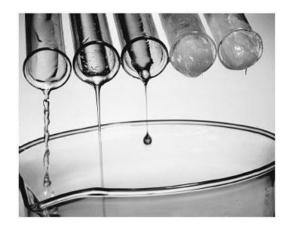

### **ADDITIVES**

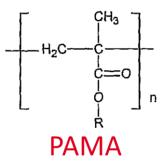
## Active




# **Inactive**



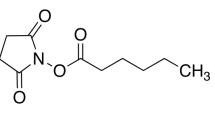


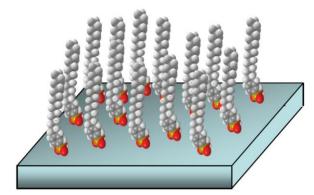


### **MOST IMPORTANT ADDITIVES**





Pour Point Depressant






## **MOST IMPORTANT ADDITIVES - II**







Foam Inhibitor

$$\begin{array}{c} H_3C \\ H_3C \\ \end{array} \\ \begin{array}{c} H_3C \\ \end{array} \\ \begin{array}{c} CH_3 \\ \end{array} \\ \begin{array}{c}$$





## WHAT'S ON THE BOTTLE?

| Viszkozitási osztályok (SAE J 300) |                |                |                                                          |                                                          |                                            |  |  |
|------------------------------------|----------------|----------------|----------------------------------------------------------|----------------------------------------------------------|--------------------------------------------|--|--|
|                                    | CCS<br>max. cP | MRV<br>max. cP | Kinematikai<br>viszkozitás, 100°C<br><sub>min. cSt</sub> | Kinematikai<br>viszkozitás, 100°C<br><sub>max. cSt</sub> | HTHSV, 150°C<br>min. cP                    |  |  |
| 0W                                 | 6,200 at -35   | 60,000 at -40  | 3.8                                                      | -                                                        | -                                          |  |  |
| 5W                                 | 6,600 at -30   | 60,000 at -35  | 3.8                                                      | -                                                        | -                                          |  |  |
| 10W                                | 7,000 at -25   | 60,000 at -30  | 4.1                                                      | -                                                        | -                                          |  |  |
| 15W                                | 7,000 at -20   | 60,000 at -25  | 5.6                                                      | -                                                        | -                                          |  |  |
| 20W                                | 9,500 at -15   | 60,000 at -20  | 5.6                                                      | -                                                        | -                                          |  |  |
| 25W                                | 13,000 at -10  | 60,000 at -15  | 9.3                                                      | -                                                        | -                                          |  |  |
| 20                                 | -              | -              | 5.6                                                      | < 9.3                                                    | 2.6                                        |  |  |
| 30                                 | -              | -              | 9.3                                                      | < 12.5                                                   | 2.9                                        |  |  |
| 40                                 | -              | -              | 12.5                                                     | < 16.3                                                   | 2.9 (0W-40, 5W-40, and 10W-40 grades)      |  |  |
| 40                                 | -              | -              | 12.5                                                     | < 16.3                                                   | 3.7 (15W-40, 20W-40,<br>25W-40, 40 grades) |  |  |
| 50                                 | -              | -              | 16.3                                                     | < 21.9                                                   | 3.7                                        |  |  |
| 60                                 | -              | -              | 21.9                                                     | < 26.1                                                   | 3.7                                        |  |  |











